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Experimentally determined ionization potentials in the literature are used to plot the binding energies for
neutral atoms as a function of atomic number Z for Z¼ 2–30, 32, 36, 42. From this pretty smooth plot we
have subtracted non-relativistic Hartree–Fock binding energies, using both available numerical values and
the almost analytical result, based on the non-relativistic Thomas–Fermi statistical theory valid for large
Z. The difference is still relatively smooth. For Mo, with Z¼ 42, the difference is about 70 atomic units.
This difference is then analyzed using first relativistic theory of an inhomogeneous electron liquid and then
the Local Density Approximation (LDA), and for Mo their results yield approximately 88 and 67 atomic
units respectively. We infer that a highly accurate relativistic many-electron theory will therefore be needed
before reliable electron correlation energies can be extracted from the experimental binding energies for
atoms heavier than Argon. This fact has prompted us to use available LDA calculations to confront three
theoretical predictions of the Z dependence of non-relativistic electron correlation energies at large Z.
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1. INTRODUCTION

The electron correlation energies in atoms ranging from helium to argon are by now
reasonably well known, a recent contribution being that of Alonso et al. [1], where
contact is made with the density functional studies of Perdew et al. [2]. Our interest
in this work is in heavier atoms.

The experimental way of determining the total binding energy of an atom is by
adding all its ionization potentials. The two most complete data sets of ionization
energies are those in the CRC Handbook of Chemistry and Physics [3] and in the
NIST Atomic Spectra Database [4]. The former lists all ionization energies for the
first 30 elements of the periodic table, and the latter adds another four, namely
Z ¼ 32, 34, 36, 42, and gives in some cases, the uncertainty of the measured values.
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The difference between the total binding energy and the Hartree–Fock energy of an
atom is due to Coulomb correlation and relativistic effects. In order to determine the
importance of each of them we study in Section 2 the relativistic contribution calculated
within both the Thomas–Fermi model and the Local Density Approximation (LDA)
to the Density Functional Theory (DFT), and compare the results to various estimates
of the Coulomb correlation energy.

Finally, in Section 3 we analyze the asymptotic behavior of the Coulomb correlation
energy for large atomic number. Since there are no experimental data for the total bind-
ing energies of heavy atoms, we use LDA results for testing three theoretical predictions
of the Z dependence of non-relativistic electron correlation energies at large Z.

2. MEDIUM-WEIGHT ATOMS

If we denote the ground-state neutral atom energies by E(Z), we have used experimental
ionization potentials given in Refs. [3,4] to plot in Fig. 1 the binding energies jEðZÞj as
a function of Z, for all the atoms for which the complete set of ionization potentials is
known, that is for Z � 30 and Z ¼ 32, 34, 36, 42. The corresponding data are presented
in the third and fourth columns of Table I. The total binding energies have been calcul-
ated as the sum of ionization energies and, when possible, an estimation of the uncer-
tainty is given. The differences between both sources are not very large and can be taken
as lower limits of the uncertainty in those cases where the uncertainty of all the ioniza-
tion energies is not known.

Figure 1 shows that binding energies depend on atomic number in a smooth way.
Therefore, in Fig. 2, we present the results of subtracting from the experimental
curve in Fig. 1 the non-relativistic Hartree–Fock ground state energies given by
Clementi and Roetti [5]. The numerical values are listed in the sixth column of
Table I. We note that for Mo, as the heaviest atom considered in Figs. 1 and 2, the dif-
ference shown in Fig. 2 is approximately two orders of magnitude smaller than the
binding energy given in Fig. 1.
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FIGURE 1 Experimental atomic binding energies, in atomic units, calculated as the sum of the successive
ionization potentials given in [3,4]. The line is merely a guide for the eye.
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For comparison with the use of numerical Hartree–Fock data, we record the analytic
form of the electron density theory (see, e.g. Ref. [7])

ETFðZÞ
�� �� � 0:7687Z7=3 �

1

2
Z2 þ 0:26Z5=3 : ð1Þ

In Eq. (1), the first term is the self-consistent energy of the Thomas–Fermi non-
relativistic atom; going back to Milne [8], the Z2 term is dominantly accounting for
the large electron density gradient in the K shell and was first given by Scott [9],
and the final Z5=3 term is mainly exchange energy corrected for differences between
WBK-like discrete atomic eigenvalues and the Thomas–Fermi semiclassical distribution
of eigenvalues (see Refs. [10–12]). The use of Eq. (1) instead of Hartree–Fock results [13]
does not change Fig. 2.

The difference between experimental binding energies and non-relativistic Hartree–
Fock values arises from two sources: correlation and relativistic corrections. In order
to estimate the relative importance of each of them, and motivated by the usefulness

TABLE I Experimental atomic binding energies (CRC from Ref. [3], and ASD from Ref. [4]), non-
relativistic Hartree–Fock energies from Ref. [5], relativistic Thomas–Fermi corrections from Eq. (2), and
relativistic LDA corrections calculated from Ref. [6], in atomic units

Z Atom �EexpðCRCÞ �EexpðASDÞ �EHF EHF � Eexp �ErelðTFÞ �ErelðLDAÞ

1 H 0.4997335 0.4997335 — — — —
2 He 2.903388 2.9033 2.861680 0.04171 0.0005 -0.000051
3 Li 7.477980 7.4779 7.432726 0.04526 0.0022 0.000036
4 Be 14.66846 14.66838 14.57302 0.0954 0.0065 0.000788
5 B 24.65823 24.65824 24.52906 0.1292 0.0153 0.003133
6 C 37.85569 37.85570 37.68861 0.1671 0.0310 0.008422
7 N 54.61193 54.61194 54.40092 0.2110 0.0566 0.018468
8 O 75.1084 75.1086 74.8094 0.299 0.0959 0.035576
9 F 99.8062 99.8060 99.4093 0.397 0.1532 0.062591

10 Ne 129.0504 129.0505 128.5470 0.503 0.2336 0.102922
11 Na 162.4310 162.4315 161.8589 0.572 0.3428 0.161631
12 Mg 200.3254 200.3252 199.6146 0.711 0.4874 0.243559
13 Al 242.7289 242.7282 241.8767 0.852 0.6747 0.353750
14 Si 289.8894 289.8888 288.8543 1.035 0.9126 0.498528
15 P 341.9819 341.9818 340.7187 1.263 1.2100 0.684798
16 S 399.080 399.076 397.505 1.58 1.5765 0.920204
17 Cl 461.381 461.384 459.482 1.90 2.0225 1.213157
18 Ar 529.1 529.2 526.817 2.4 2.5594 1.572854
19 K 601.9 602.0� 0.4 599.165 2.8� 0.4 3.1992 2.010603
20 Ca 680.2 680.2� 0.5 676.758 3.4� 0.5 3.9550 2.537063
21 Sc 763.9 763.8� 0.5 759.735 4.1� 0.5 4.8406 3.157198
22 Ti 853.4 853.4� 0.4 848.406 5.0� 0.4 5.8707 3.885247
23 V 948.8 948.9� 0.7 942.884 6.0� 0.7 7.0612 4.733680
24 Cr 1050.49 1050.54 1043.355 7.1 8.4286 5.708051
25 Mn 1158.3 1158.2� 1.0 1149.866 8.3� 1.0 9.9906 6.844840
26 Fe 1271.7 1273.1� 1.1 1262.443 10.7� 1.1 11.7655 8.136024
27 Co 1393.4 1393.3� 1.2 1381.414 11.9� 1.2 13.7731 9.604559
28 Ni 1520.7 1521� 2 1506.870 14� 2 16.0337 11.266670
29 Cu 1655.1 1655� 7 1638.963 16� 7 18.5690 13.124536
30 Zn — 1796� 6 1777.848 18� 6 21.4016 15.240735
32 Ge — 2102� 8 2075.359 26� 8 28.0543 20.250263
34 Se — 2426 2399.866 26 36.1940 26.456690
36 Kr — 2789 2752.055 36 46.0409 34.051298
42 Mo — 4050� 30 3975.534 70� 30 88.3089 67.248699
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of Eq. (1) in the analysis of experimental data, we proceed to bring Fig. 2 into direct
contact with the self-consistent relativistic Thomas–Fermi calculations for neutral
atoms carried out by Hill et al. [14]. These workers write the relativistic
correction ErelðTFÞ to atomic binding energies of neutral atoms, with large Z since
the Thomas–Fermi model has statistical origins and therefore comes into its own for
large Z, as

ErelðTFÞ ¼ E
ð1Þ
rel þ E

ð2Þ
rel ð2Þ

where

E
ð1Þ
rel ¼ �ð�ZÞ

2Z2
�
0:94435� 2:07506Z�1=3 þ 1:46232Z�2=3

þ 2:47358Z�1 � 2:28582Z�4=3
�

ð3Þ

and

E
ð2Þ
rel ¼ �ð�ZÞ

4Z2 0:238715þ 4:97877Z�2=3 � 0:07781Z�1 � 4:74528Z�1 logZ
� �

ð4Þ

In Fig. 2, we have therefore, also plotted the result ErelðTFÞ from Eqs. (2)–(4) given in
the seventh column of Table I. As expected from such an electron gas theory (including
also electron gas approximation for kinetic energy) the Z dependence is entirely
smooth. Besides, it is evident that this simple approximation overestimates the rela-
tivistic contribution to the total binding energy, since �ErelðTFÞ is greater than the
sum of Coulomb correlation and relativistic effects (EHF � Eexp) for Z>15. A better
approximation to the relativistic contribution can be obtained from the Density
Functional Theory. In the last column of Table I we present the difference between
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FIGURE 2 Energy differences between experimental and Hartree–Fock atomic binding energies (f), com-
pared to relativistic Thomas–Fermi corrections to atomic binding energies (g) and relativistic LDA correc-
tions to atomic binding energies (m). See text for details.
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the very accurate non-relativistic and the relativistic total energies calculated within the
LDA approximation by Kotochigova et al. [6]. This difference is also plotted in Fig. 2.
Using this local approximation the relativistic contribution to the total binding energy
is also smooth on Z, but �ErelðLDAÞ is always smaller than EHF � Eexp.

Summarizing, this plot shows that, save for the lightest elements, the main contribu-
tion to the difference between experimental and Hartree–Fock atomic binding energies
comes from relativistic effects rather than from correlation. So, while the problem of
electron correlation in medium-weight atoms remains, of course highly interesting,
it is clear that the dominant correction to, say the electron gas theory embodied
in Eq. (1) for non-relativistic quantum mechanics, comes from relativistic effects. We
stress here, that for internal consistency, we have restricted our comparisons entirely
to the results of the original relativistic Thomas–Fermi theory going back to Vallarta
and Rosen [15].

It is possible in some cases to compare in a numerical way semiempirical correlation
energies with relativistic corrections. We present in Table II, the non-relativistic total
energies of several atoms calculated within the accurate second order Møller–Plesset
(MP2) approximation calculated by Flores et al. [16]. The relativistic contribution
to the total binding energies can be obtained by subtracting these energies from the
experimental ones given in Table I, Erel ¼ Eexp � EMP2. It is interesting to note that
the comparison with the last column of Table I shows that LDA estimations of this con-
tribution are indeed rather accurate, in spite of LDA being quite a simple approxima-
tion. The table also presents the results of three calculations of the Coulomb correlation
energies: MP2 [16], the ‘‘soft’’ Coulomb hole approach [17,18], and the virial con-
strained effective Hamiltonian method [19]. From this table it is easy to see that even
for a relatively light element like Ar, the relativistic contribution to the total binding
energy is twice as large as the correlation energy and, as Z increases the difference
gets bigger, reaching for Zn one order of magnitude.

3. HEAVY ATOMS

Three proposals have been made on the behaviour of the Coulomb correlation energy
for Z ! 1, namely Ec / Z [20], Ec / Z4=3 [21] and Ec / Z logZ [22]. There are
no complete series of experimental ionization potentials for heavy atoms and even
for medium-weight ones the uncertainties in their sum, as shown in Table I, are
greater than the correlation energies. Thus, the different proposals for the asymptotic

TABLE II Nonrelativistic second-order Møller-Plesset (MP2) atomic binding energies from Ref. [16],
the corresponding relativistic contribution to total energies calculated using the experimental energies in
Table I, and several estimations of the Coulomb correlation energies: MP2 from Ref. [16], ‘‘soft’’
Coulomb-hole approach (SCH) from Refs. [17,18], and the virial constrained effective Hamiltonian
method (VCEH) from Ref. [19]. All of them in atomic units

Z Atom �EtotðMP2Þ �Erel �EcðMP2Þ �EcðSCHÞ �EcðVCEHÞ

10 Ne 128.938298 0.112 0.38811 0.347 0.4080
12 Mg 200.054066 0.27 0.42793 0.442 0.4656
18 Ar 527.543613 1.5 0.70945 0.736 0.7817
30 Zn 1779.5456 16� 6 1.69746 1.740 1.6860
36 Kr 2753.9457 35 1.8907 2.262 2.0671
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Z dependence of non-relativistic electron correlation energies, have to be tested via
appeal to Schrödinger many-electron theory rather than by direct extraction from
experimental binding energies.

As a first step in this direction we have calculated LDA atomic correlation energies
for closed-shell heavy atoms up to Z¼ 120 from the exchange-only and exchange
þcorrelation calculations of Andrae et al. [23]. The results are presented in Table III.
The fitting of these data to the three proposed asymptotic behaviors gives the following
regression coefficients: Z, R2 � 0:9998; Z4=3, R2 � 0:9983; Z logZ, R2 � 0:9993. Thus,
the first proposal seems to fit in slightly better than the other two, at least within a local
density framework. Nevertheless, further calculations for heavier atoms and with more
accurate models have to be carried out before the dispute among the three proposals
can be settled.
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